
NASA-CR-200683

/IV 7- "I(

Phase determination from mostly one-sided interferograms

David G. Johnson, Wesley A. Traub, and Kenneth W. Jucks

Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, Massachusetts, 02138

Abstract

We show how to detect and correct for non-linear phase shifts in a mainly one-sided

interferogram of an emission-line source. We simultaneously detect and correct for

an out-of-phase emission background from the spectrometer. The method reqmres

two auxiliary spectra, one of a strong continuum source, and one of an emission-line

source with little or no continuum.
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1. Introduction

Phase determination for an ideal interferometer amounts to finding the position of zero path

difference (ZPD) for each spectral element in a recorded interferogram. In this case, the

interferogram 1_(x') of a single unresolved spectral line centered at the wavelength Ao = 1/ao

is given by _F(x') = a cos 2_rao(x'-x), where x is the position of ZPD and x' is the retardation

of the retroreflector in the long arm of the interferometer. The instantaneous optical path

difference (OPD) is given by x' - x. In the ideal case where an interferogram sample point

falls precisely on the peak of the interferogram we have x -- 0, but in general x _ 0. The

transform of a one-sided interferogram gives

F(a) = -_ fi(x') e i2_''' dx'

°.'"[sin°2 - + i a ' (1)



where L is the length of the scan, a = 2r(a - a0)L, and we have dropped terms containing

(a + a0). The transform of a mostly one-sided interferogram (where the integral limits are

-L1 to +L2, L1 << L2, and a tapering function is applied between -L1 and +L1 to avoid

double-counting of the two-sided part of/_) is similar, but differs in details which are not

important here. In either case, once we have determined x the spectrum is recovered by

taking the real part of F(a)e -i_°x. The transform of a two-sided interferogram (where the

mirror scans from -L to L) for the same unresolved line is simply ae i2'_a°x sin a/2a.

The phase of the transform F(a) in Eq. 1 is given by a slowly varying term (2_ra0x), plus

a rapidly varying term, tan -1 [(1 - cos a)/sin a], which is only significant near a spectral line.

We have found that, for our interferometer, the slowly varying term is not well modelled by

the linear function 2_cax. In Sections 3-5 we present a method for detecting and correcting

for a small non-linear phase shift. We simultaneously detect and correct for an out-of-phase

emission background from the spectrometer.

Eq. 1 illustrates a crucial element of our phase-recovery method, line symmetrizing,

which is discussed in Section 4. The phase factor 2TCaoX in Eq. 1 is not known a priori, but

must be estimated. If the estimated phase equals 2_raoX, then the real part of Eq. 1 gives

a symmetric line, from the sin a/a term. If the estimated phase is 2_rOoX + r/2, then the

real part of Eq. 1 gives an antisymmetric line, from the (1 - cos a)/a term. In practice, it

is straightforward to select the optimum phase factor which symmetrizes the real part of a

complex spectral line by multiplying the region around the line by a series of equispaced

phase factors, and testing the real part of each result for symmetry.

2. Instrument description

The far-infrared spectrometer (FIRS-2) was designed and built at the Smithsonian As-

trophysical Observatory for the purpose of measuring stratospheric emission spectra from

balloon and aircraft platforms. The spectrometer produces mostly one-sided interferograms,

which must be transformed and accurately phase-corrected before the spectra can be used



to retrieve constituent profiles. The FIRS-2 and data reduction procedurearedescribedin

detail elsewhere1'2;our phase-recoverymethod is summarizedin the latter2, but fully dis-

cussedin the presentpaper. A brief description of the instrument asconfiguredfor balloon

flights follows.

The flight instrument consistsof a limb-scanningtelescope,the interferometer,detectors,

and associatedcontrol electronics.The telescopeis a small off-axisreflectorwhich is pointed

in elevation relative to a single-axisstabilized platform3'4. The interferometeruseshollow

corner-cuberetroreflectorsand a 11#m uncoatedMylar beamsplitter,and scansoveroptical

path differencesfrom -L1 to +L2, whereL1 = 1.2 cm and L2 = 120 cm. We use two liquid

helium cooled detectors, a gallium-doped germanium photoconductor for the 75-220 cm -1

band and a copper-doped germanium photoconductor for the 330-700 cm -_ band. The field

of view is defined by field stops near the detectors.

During a balloon flight we record interferograms for a sequence of elevation angles, repeat-

ing the sequence throughout the flight. We first observe an ambient-temperature blackbody

source at an elevation angle of 90 °, followed by a space view at 30 °, and then we observe

the limb at elevation angles of 0.0, -2.3, -3.0, -3.6, -4.2, and -4.6 °. A complete sequence

takes about 2700 s. We show small segments of sample flight spectra for 90, 30, and -4.17 °

in Fig. 1, recorded at a balloon altitude of 36 km. The spectra have been phase corrected

using the method outlined below, but have not been calibrated in intensity or wavenumber.

Note the presence of a substantial out-of-phase (negative) instrumental background in the

30 ° spectrum. The phase recovery method discussed here is not affected by this background,

which is later detected and corrected for.

3. Model description

We assume that the measured blackbody spectrum Mg0(a) can be modelled as

Mg0(a) = [B(a) + E(a)ei¢(_)]e i[2_'_x9°+_('_)], (2)



where B(a) is the product of the instrumental response function and a blackbody spectrum,

E(a)e i¢('_) is the complex background spectrum 5, Xgo is the position of ZPD in the blackbody

interferogram, and e(a) is the non-linear phase shift.

Similarly, we model the measured space and limb spectra as

M30(o)= [S3o(O)+

Mo(a) = [S0(a)+ (4)

where $30 and SO are the phase-corrected space and limb spectra, and x30 and x0 are the

positions of ZPD in the respective interferograms.

In this notation, the Mg0,a0,0(°) functions are complex spectra obtained by applying

a fast-Fourier transform to an observed and windowed interferogram, where the window

function is typically a weight running linearly from 0 to 1 between -L1 and +L1, and a

constant weight of 1 between +L_ and +L2. Also in this notation, the functions on the right

sides of Eqns. 2-4 (B(°), Sao,e(a), E(a), ¢(°), e(a), and xg0,a0,0) are all to be extracted from

the M(°) data, and therefore include a random noise component. The recovered spectra,

B and Sa0,0, are phase-corrected, but must be wavenumber -2 and intensity-calibrated 2,5 (see

also Section 5).

From typical balloon altitudes the space spectrum Sa0 consists of a few narrow emission

lines with no continuum emission, the limb spectra So contain many lines superposed on

a substantial continuum, and the blackbody spectrum B consists of continuum alone. We

assume that the background spectrum E(a)e i¢(') is constant for the duration of an obser-

vation sequence, and that e(°) is constant for any given balloon flight. As will be shown in

the next section, e does indeed seem to be constant with respect to time.

4. Estimate of non-linear phase

As mentioned in Section 2, each interferogram consists of a low-resolution two-sided part

(maximum OPD range of :t:L1 = ±1.2 cm) and a high-resolution one-sided part (maximum
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OPD of L2 = +120 cm). Both the low and high resolution interferograms are used in the

steps which follow; we will use m to represent the transform of the low-resolution two-sided

interferogram, and M to represent the high-resolution transform. The basic procedure is to

estimate Xao using the high-resolution spectrum M30, estimate xg0 using the low-resolution

spectrum rag0, and then estimate e(_) by calculating the phase of the difference rag0 - m30

at low resolution. In the following step-by-step procedure we have omitted some details

(tapering functions used for low- and high-resolution transforms, zero-padding, and the

like) for brevity and clarity; further details regarding our routine implementation of the

fast-Fourier transform are presented in Ref. 2.

Our method differs from one previously described 6 in that it requires two auxiliary spectra

but works for almost totally one-sided interferograms. The radiometric calibration method

described in Ref. 5 calibrates and phase-corrects spectra in a single step, but requires saving

the complex transforms of hot and cold calibration spectra. Neither method 5'6 is capable

of determining the phase factor 21ra0x when the two-sided transform is dominated by the

complex background E(a).

Step 1. To begin with, we examine the nominal (theoretical or experimental) spectra to

be analyzed, and select a large number (40 to 60) of spectral lines which we anticipate should

be intrinsically symmetric with respect to reflection about their central wavenumbers. For

each line in this group, estimate a value of xa0 by symmetrizing the line in the full resolution

30 ° spectrum. As can be seen by examining Eq. 1, we can determine the phase (modulo lr)

for a spectral line at ai by finding the phase Hi for which Maoe -i_ is symmetric near the line

center. We calculate xa0 by fitting the function _(a) = 27ra230 to the derived set of (ai, _i)

values. The residuals from the fit are a combination of the error in estimating/3i and the

non-linear phase term e(ai). In practice, the uncertainty in j3i is too large to get a good

estimate of e(ai) from the residuals.

Step 2. Calculate m_0, the low-resolution space spectrum with the linear phase removed:

mao(a)e -i2_a_a° = [$30 + Eei¢]e i¢, (5)



!

= m30. (6)

Step 3. Estimate x90 by calculatingthe phase from the transform of the short two-sided

part of the blackbody interferogram. We calculatethe phase _i at each point in regions

where B(a) >> E(a), and again we fita linearfunction to the set of (ai,_i) to derive x90.

The residualsfrom thisfitwould give a good estimate of e(a),but only in regionswhere the

background issmall.

Step 3. Calculate m_0 ,the blackbody spectrum with the linearphase removed:

mg0(o)e-_2_9o= [B+ Eefl¢', (7)

!

= m9o. (S)

Step 5. Calculate the non-linear phase e(a):

' ' -- (B ÷ Eei¢)e i_ - ($3o ÷ Eei¢)e i_,7/7,90-- /7_30

= (B S _ei'"-- 30) ,

(9)

(io)

(11)r_(m;0- m_o)]
e(a) = tan -1 LR(m&o- m-_0)J"

Step 6. Repeat the process for a number of pairs of Mg0 and M30, average the results,

and smooth the average to produce the final estimated non-linear phase term g(a).

In Fig. 2 we show _(a) for two sets of measurements made several years apart using

different beamsplitters. The estimated phase is unreliable near minima in the beamsplitter

' ' is dominatedefficiency function because in these regions B << E and the difference rngo- m30

by noise. Outside these regions the two phase estimates are in excellent agreement, indicating

that e(a) is constant in time and independent of beamsplitter thickness. A discussion of the

possible physical origin of the non-linear term e(a) is found in Ref. 5.

5. Background estimate and normalization

Step 7. Estimate the background Ee i¢ by clipping lines from the high-resolution phase-

corrected spectrum ' --_M_0c and smoothing the result, as follows. First remove the non-linear

phase _(a) from the high-resolution space spectrum M_0:



M3' -i_ Eei_)ei_]e-i_,oe = [(&o+

= $3o + Ee _.

(12)

(13)

Then effectively subtract $30 by clipping the sharp spectral lines from the result:

, -i_ (14)M_oe -S3o=Ee i*,

= M_. (15)

Clipping lines is equivalent to subtracting $30 since the continuum emission in the space

view is negligible. The clipping is accomplished numerically by replacing each apparent

sharp spectral line (above a preset noise threshold) by a straight-line segment which bridges

the adjacent spectral regions.

Step 8. Calculate the estimated limb spectrum Se(a) for the remaining elevation angles

by estimating 2e as for 230, phase correcting, and subtracting the background as follows:

Moe-ig e-i2_ra_e - M_'o = (Se + Eei¢)ei(2'_x°+_)e-i_e -i2_e - Ee i¢,

:

(16)

(17)

Step 9. Calculate the observed response B(a) to the blackbody source:

M9 t -i_ tt
oe - M;o = B(cr). (18)

Step 10. Calculate the intensity-calibrated limb spectra S_(a) from the derived Se(a)

and B(a):

Se(a)P(Tbb, a) (19)
S_l(_) = B(a)P(277 K,a)'

where P(T, a) is the Planck function, Tbb is the measured temperature of the reference black-

body source, and 277 K is a standard reference temperature, chosen for convention in our

data analysis procedure. The resulting spectra S_ al(a) are dimensionless and independent of

the instrument spectral response, which is convenient for plotting and visualization. Spectra

in physical units (erg cm -2 s -1 st -1) can easily be recovered by multiplying by P(277 K, a).
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6. Results

We judge the success or failure of the phase determination by comparing measured and

calculated emission line spectra and looking for systematic differences. As mentioned in

Section 4, the scatter in the estimated phase j3i is too large to be able to judge the effect of

the non-linear phase term on single spectra. In coadded spectra, however, the improvement

is considerable in regions where e(a) is large, particularly in the region 560-610 cm -1 where

the non-linear term is as large as 15 °. This region is used for fitting CO2 and N20 in FIRS-

2 spectra, and correcting for the non-linear phase term eliminates a systematic difference

between observed and calculated line shapes in this region. Spectra which have been phase

corrected using the method outlined in this paper have emission line profiles which are visibly

more symmetric than results from assuming a linear phase function, as shown in Fig. 3, and

are a much better match to calculated spectra. Failing to correct for the non-linear phase

term not only results in a shift in the line position, but also produces highly asymmetric

line wings.

7. Conclusion

We describe a method for phase correcting and calibrating emission spectra from mostly

one-sided interferograms. The method, developed for the FIRS-2, is effective in the presence

of an out-of-phase background. The algorithm is in routine use to reduce FIRS-2 spectra,

and has been used for several years now with good success.
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Fig. 1. FIRS-2 spectra recorded at a balloon altitude of 36 km. Vertical scale (arbitrary units) is

the same for each graph. The elevation angles are indicated; at 90° the telescope views a reference

blackbody.
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Fig. 2. Non-linear phase term _ estimated for two different Mylar beamsplitters. The data

from 75-220 are from the far-infrared detector, and data from 330-700 are from the mid-infrared

detector.
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Fig. 3. A portion of a flight spectrum which shows the effect of ignoring the non-linear phase

term g. The upper curve was produced using the phase-recovery method outlined in this paper;

the heavy curve indicates a calculated spectrum for the same region. The lower curve shows the

result after assuming that _ = 0. The baselines for the upper curve and calculated spectrum have

been shifted by 0.12 for clarity.
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APPENDIX B

Ozone Production and Loss Rate Measurements in the Middle Stratosphere


